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1 Introduction

Once the connection to dual non-commutative gauge-theories was realised [1], much work

was done analysing the supersymmetry conditions for D0-Dp brane systems in the presence

of B-fields [2, 3]. In short, D0-D2 will not be supersymmetric for any finite B-field, D0-

D4 is 1/4 BPS with (anti-)self-dual fields B12 = ±B34, and D0-D6 requires ±B12B34 ±
B34B56±B12B56 = ±1 for it to be 1/8 BPS. As T-duality maps B-fields to frame rotations,

these systems are T-dual to rotated brane configurations whose supersymmetry conditions

have also appeared in the literature [4].

Once the supersymmetry conditions have been identified, one of the subsequent steps

is identifying supergravity solutions. In the spirit of the AdS/CFT, the supergravity duals
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of non-commutative field theories were studied in [5] by considering branes on tilted tori.

Unless other branes are present, despite the obfuscating zoo of induced fluxes, these Dp-

brane B-field solutions are 1/2 BPS and there are no constraints on the B-fields. Apart

from the Dp-brane with B-fields solution, the only other supersymmetric solution appearing

explicitly in the IIA literature is that of D0-D4 B12, B34 [6]. To the extent of our knowledge,

the supersymmetric ten-dimensional D0-D6 with B-fields solution has not been written

down explicitly. However, in both four and five-dimensions, prescriptions have been given

for constructing such solutions.

In the absence of fully back-reacted solutions, there are various techniques to glean

a better understanding of the physics. In this paper, we make use of both string theory

scattering amplitudes and DBI D0-probe potentials to get a better picture. From analysing

scattering amplitudes, we see evidence for three regimes: one with sub-critical B-fields

where D0 is repelled from D6; a critical B-field regime where there is no force; and a

super-critical B-field where the D0 is attracted. So, for large enough B-fields one could

imagine a scenario where D0 sits on top of D6. However, this is not the whole story. When

we consider the back-reaction of the D6 with B-field solution, we find that a D0 “sees”

a potential. For the critical B-field, the minimum is at infinity, while as B increases, the

minimum migrates inwards towards the D6, but never reaches the D6-brane for any finite

B-field. All of this chimes well with the work of Denef and Moore [7, 8].

In the literature, in lower dimensions, there are works allowing descriptions of a back-

reacted D0-D6 BPS state. In the elaborate and far-reaching works of Denef and Moore, a

picture emerges in four-dimensions, of BPS bound states of D-branes either at a single point

or as multi-centred composites [7]. In particular for the D0-D6 system, in the presence of

large enough B-fields, a wall of marginal stability exists separating a bound D0-D6 state

at finite separation from its infinitely separated constituents [8].

Via the “4D-5D” connection [9], these composites are related to a whole host of su-

persymmetric super-tube, black ring and black hole solutions in five-dimensions [10]. For a

review of these solutions, see [11]. With these solutions in hand, their microstate counting

is an area that has received much attention. In particular, for non-supersymmetric D0-

D6, a description of microstates in terms of intersecting D3-branes was proposed recently

in [13].

While we were winding up this project, we became aware of [14] which was also nearing

completion, and overlaps with some of the material in this paper.

The structure of the rest of this paper runs as follows. In section 2, we write down

1/2 BPS D2, D4 and D6-branes with background B-fields in IIA supergravity. We solve

the Killing spinor equations, and compare the projectors in each case with a Dp-brane

κ-symmetry probe. In section 3, as a stepping stone towards a back-reacted description,

we introduce a D0-probe and determine the amount of preserved supersymmetry again via

κ-symmetry. We then determine the potential seen by a static D0-probe as a function of

the B-fields. In the case of D6, we recover further evidence for the multi-centres of Denef-

Moore. We also perform a complementary calculation in string theory, and compare the

results with the DBI potentials. In section 4, we explicitly construct a fully back-reacted

D0-D6 solution with B-fields which preserves 1/8 supersymmetry. This solution is not a
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black hole, but we show that the addition of some extra charges will produce a black hole

at the location of the D6. Our conventions and anything that deviates from the thrust of

the main text appears in the appendix.

2 Dp-branes with B-fields

Dp-brane solutions with B-fields in IIA supergravity may be easily constructed by tilting

tori and T-dualising (or alternatively performing an O(d, d) transformation on isometric

directions). Either way, the addition of a B-field, mimics a rotation of the brane configu-

ration. By examining the Killing spinor equations for the resulting solutions, one may see

that the overall effect of turning on a B-field in a Dp-brane background, is simply to rotate

the Killing spinor. As such no supersymmetry is broken and all the solutions we present

in this section will be 1/2 BPS.

B-fields were added to Dp-branes in [5], where the backgrounds were used to explore

the duals of non-commutative field theories. Here we review the D2 case. The approach is

to start with D1 wrapped on one cycle of a T 2, x1, while at the same time being smeared

over the other cycle, x2. We now tilt this torus by performing an area-preserving coordinate

transformation before T-dualising on the new x2 direction. The final solution is

ds2str = f
−1/2
2

[

−dx2
0 + h

(

dx2
1 + dx2

2

)]

+ f
1/2
2

(

dr2 + r2dΩ2
6

)

,

eφ = f
1/4
2 h1/2, B12 =

sin θ

cos θ
f−1
2 h,

Fr0 = sin θ∂rf
−1
2 , Fr012 = − cos θh∂rf

−1
2 , (2.1)

where

f2 = 1 +
Q2

r5
, h−1 = sin2 θf−1

2 + cos2 θ. (2.2)

As a quick check, note that righting the torus by taking the θ → 0 limit, we find, as

expected, the D2 brane solution without B-field. 1

2.1 Rotated Killing spinors

In this section we explore the effect of how turning on a B-field in a Dp-brane background

affects the Killing spinor equations. In the process, we verify that all these solutions are

1/2 BPS. For clarity we again focus on D2.

We begin with the dilatino variation for pure D2

δλ = −1

4
f

3/4
2 ∂rf

−1
2 Γr ǫ̃− 1

4
f

3/4
2 ∂rf

−1
2 Γr012ǫ̃. (2.3)

It can be quickly verified that Γ012ǫ̃ = −Γ012ǫ̃ = −ǫ̃ satisfies this equation, as expected.

For a D2 with a B-field (2.1) the dilatino variation may be re-written

δλ(B) = −1

4
f

3/4
2 ∂rf

−1
2 Γr

(

1 − eαΓ12Γ11Γ012

)

ǫ

−1

2
sf

1/4
2 h1/2∂rf

−1
2 Γr12Γ11

(

e−αΓ12Γ11 − Γ012

)

ǫ, (2.4)

1Throughtout this text 2πα′ = 1, so B2i−1 2i = bi.
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where we have used s ≡ sin θ, c ≡ cos θ to compress notation and have also defined a new

angle α

cosα = cos θh1/2, sinα = sin θf
−1/2
2 h1/2. (2.5)

It is clear that the projector

eαΓ12Γ11Γ012ǫ = ǫ,

(cos θh1/2Γ012 − sin θf
−1/2
2 h1/2Γ11Γ0)ǫ = ǫ, (2.6)

satisfies the dilatino variation. It also satisfies the gravitino variations, the details of which

we move to the appendix to reduce clutter. Note that in (2.6), the upper expression

corresponds to the orthonormal frame, where B12 = tanα, while the lower corresponds to

coordinate frame. This distinction will be important when we examine the D0-probes in

the next section.

We draw attention again to the θ → 0 limit: we obtain the projection operation for a

D2-brane i.e. Γ012ǫ = ǫ. While in the opposite limit θ → π/2 we find a D0-projector. It

may also be readily verified that the left hand side of (2.6) squares to unity by observing

that both Γ012 and Γ11Γ0 anti-commute and by also making use of (2.2).

For the gravitino variations, 2 by redefining the original Killing spinor ǫ̃ in terms of

the Killing spinor with B-field ǫ,

ǫ = exp(α/2Γ12Γ11)ǫ̃, (2.7)

it is possible to write the variations of the gravitino in the presence of the B-field ψ(B) in

terms of the original variation such that

δψ(B) = eα/2Γ12Γ11δψ, temporal, D2 transverse directions,

δψ(B) = e3α/2Γ12Γ11δψ, B12 parallel directions. (2.8)

Further details for D2 maybe found in the appendix. Similar rotations were observed for

D4 and D6 Killing spinor equations. This observation of rotated Killing spinors echoes [15],

where an extensive analysis of Killing spinors in the presence of T-duality transformations

is presented.

Once we have solved the Killing spinor equations, we may use κ-symmetry [16, 17] as

a consistency check to verify that the projectors are correct. For a brane configuration the

fraction of preserved supersymmetry is determined by the supersymmetry condition of the

gravity background coupled with the following equation:

(1 − Γκ)ǫ = 0, (2.9)

where ǫ is the spacetime supersymmetry parameter and Γκ is a Hermitian, traceless matrix

that squares to unity. Explicitly it may be expressed as

Γκ =

√
g√

g + F

∞
∑

n=0

1

2nn!
γµ1ν1...µnνnFµ1ν1 · · · FµnνnJ

(n)
(p) , (2.10)

2The same is not true for δλ. Possibly this is because it is a linear combination of gravitino variation

from M-theory.
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where g is the induced matrix on the Dp-brane worldvolume and F , is in the absence of

U(1) Born-Infeld field, up to sign, the background B-field pulled-back to the worldvolume

of the brane. For IIA Dp-branes

J
(n)
(p) =

(

Γ
n+(p−2)/2
11

) 1

(p+ 1)!
√
g
ǫµ1...µp+1γµ1...µp+1. (2.11)

By considering a D2-probe with worldvolume coordinates (t, ξi) i = 1, 2, where

X0 = t, Xi = ξi, (2.12)

along with setting F = B, we get the above projector (2.6).

2.2 D4 and D6 branes with B-fields

The earlier construction of D2 with B12 generalises readily to D4 with two orthogonal

B-fields, B12, B34 and D6 with three orthogonal B-fields, B12, B34 and B56. As for D2,

no supersymmetry is broken: the final solutions are 1/2 BPS. The Killing spinor equations

were solved and the equations of motion verified. In the case of D6 we constructed the

solution by noting the structure in the Killing spinor equations and simply reading off the

solution from the gravitino variation of δψ0. We present the solutions below.

D4 with B12,B34

ds2str = f
−1/2
4

[

−dx2
0 + h1

(

dx2
1 + dx2

2

)

+ h2

(

dx2
3 + dx2

4

)]

+ f
1/2
4

(

dr2 + r2dΩ2
4

)

,

B12 =
s1
c1
f−1
4 h1, B34 =

s2
c2
f−1
4 h2, f4 = 1 +

Q4

r3
,

eφ = f
−1/4
4 (h1h2)

1/2, h−1
i = s2i f

−1
4 + c2i ,

Fr0 = −s1s2∂rf
−1
4 , Fr012 = h1c1s2∂rf

−1
4 ,

Fr034 = h2c2s1∂rf
−1
4 , Fr01234 = −h1h2c1c2∂rf

−1
4 , (2.13)

where the Killing spinor projector is

eα1Γ12Γ11eα2Γ34Γ11Γ11Γ01234ǫ = ǫ, (2.14)

and as before we define

cosαi = cih
1/2
i , sinαi = sif

−1/2
4 h

1/2
i

. (2.15)

D6 with B12,B34,B56

ds2str = f
−1/2
6

[

−dx2
0 + h1

(

dx2
1 + dx2

2

)

+ h2

(

dx2
3 + dx2

4

)

+ h3

(

dx2
5 + dx2

6

)]

+f
1/2
6 (dr2 + r2dΩ2

2),

B12 =
s1
c1
f−1
6 h1, B34 =

s2
c2
f−1
6 h2, B56 =

s3
c3
f−1
6 h3, f6 = 1 +

Q6

r
,

eφ = f
−3/4
6 (h1h2h3)

1/2, h−1
i = s2i f

−1
6 + c2i , (2.16)
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with the following fluxes

Fr0 = s1s2s3∂rf
−1
6 , Fr012 = −c1s2s3h1∂rf

−1
6 , (2.17)

Fr034 = −s1c2s3h2∂rf
−1
6 , Fr056 = −s1s2c3h3∂rf

−1
6 , (2.18)

Fr03456 = −s1c2c3h2h3∂rf
−1
6 , Fr01256 = −c1s2c3h1h3∂rf

−1
6 , (2.19)

Fr01234 = −c1c2s3h1h2∂rf
−1
6 , Fr0123456 = −c1c2c3h1h2h3∂rf

−1
6 , (2.20)

The projector is

eα1Γ12Γ11eα2Γ34Γ11eα3Γ56Γ11Γ0123456ǫ = ǫ, (2.21)

where

cosαi = cih
1/2
i , sinαi = sif

−1/2
6 h

1/2
i

. (2.22)

3 D0-probes in D2, D4, D6 B-field backgrounds

Having discussed the backgrounds with B-fields in the last section, we will consider the

introduction a D0-probe, and its effect on the preserved supersymmetry. We initially

consider string theory scattering amplitudes as a first approximation, before including the

back-reaction of the D6 by performing a DBI probe calculation to determine the potentials

seen by such probes. We confirm that these calculations overlap in the large distance limit.

From [18], we know that D0-probes see an attractive, a flat and an repulsive potential

for pure D2, D4 and D6-brane backgrounds respectively. In this section we see how the

introduction of B-fields changes this analysis.

3.1 Kappa symmetry analysis

Here we establish what to expect by examining a supergravity projector for a D0-brane

Γ11Γ0ǫ = ǫ, (3.1)

and considering its compatibility with the 1/2 BPS projectors from the last section. We

will work in orthonormal frame where B = tanα, and will via this analysis, rederive the

supersymmetry conditions.

Introducing the D0-projector into the D2 with B-field background, means ensuring

that the matrix Γ11Γ0 commutes with (2.6). As Γ11Γ0 anti-commutes with the pure D2-

projector Γ012, this is only possible in the limit that sin θ → 0, or alternatively in the infinite

B-field limit. In this limit, the final configuration again recovers half the supersymmetry.

For the D4-background, by examining the projector again, we find the condition

for supersymmetry

sin(α1 ± α2) = 0, (3.2)

where we have allowed for a choice of sign in the projector (2.14), while imposing the D0

projector Γ11Γ0ǫ = ǫ and the D4 projector Γ11Γ01234. This constraint above essentially

removes the D2-projectors leaving the mutually commuting D0 and D4-projectors, making

the final configuration 1/4 BPS. In terms of the B-fields it just allows (anti-)self-dual

B-fields.

– 6 –
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Finally for the D6-background, we see that the D0-projector and D6-projector anti-

commute. They can only be reconciled if we orchestrate the B-fields, so that we only

impose D0 and D4 projectors (or alternatively, D2 and D6-projectors which are manifest

in later solutions)

Γ11Γ0, Γ11Γ01234, Γ11Γ01256, Γ11Γ03456 , (3.3)

in the presence of the constraint

cos(α1 ± α2 ± α3) = 0. (3.4)

This configuration is 1/8 BPS.

3.2 Scattering amplitudes

In this section we calculate the force between static Dp-branes in string theory in the

presence of B-fields. By considering the usual cylinder vacuum amplitude [19], we can

weigh the attraction from the graviton, dilaton and B-fields with the repulsion due to the

RR tensor. We simply quote the results with the details being removed to the appendix.

These amplitudes we later compare with the DBI probe results in the large R limit.

Initially, we consider D0-brane located at a finite distance R from D2, D4 and D6-

branes with B-fields. For a D2-brane (stretched along directions x0, x1 and x2) with a

magnetic field B12 = b on its worldvolume, the amplitude of the interaction is given by

A ∝ T 2
2 g

2
s

1

cos θ
(1 − sin θ)2G7(R

2). (3.5)

Here b = tan θ, and see that as the B-field increases the attraction between the branes

diminishes, until the limit b→ ∞, where there is no force.

We next consider a D4-brane with B-fields interacting with a D0-brane. The most

general B-field in this case has four non-zero components B12 = −B21 = b1 and B34 =

−B43 = b2. Following similar analysis to above, the amplitude becomes

A ∝ T4T0g
2
s

2 − cos 2θ1 − cos 2θ2 − 4 sin θ1 sin θ2
cos θ1 cos θ2

G5

(

R2
)

, (3.6)

where b1 = tan θ1 and b2 = tan θ2. This amplitude vanishes when

2 − cos 2θ1 − cos 2θ2 − 4 sin θ1 sin θ2 = 0, (3.7)

which gives sin θ1 = sin θ2 or equivalently θ1 = θ2 corresponding to (anti-)self-dual B-fields.

Finally we move onto a D6-brane with B-field interacting with a D0-brane. The most

general B-field in this case has six non-zero components B12 = −B21 = b1, B34 = −B43 = b2
and B56 = −B65 = b3. The same analysis gives the amplitude to be

A ∝ T6T0g
2
s

1 − cos 2θ1 − cos 2θ2 − cos 2θ3 + 4 sin θ1 sin θ2 sin θ3
6 cos θ1 cos θ2 cos θ3

G3

(

R2
)

, (3.8)

where b1 = tan θ1, b2 = tan θ2 and b3 = tan θ3. This amplitude vanishes when

1 − cos 2θ1 − cos 2θ2 − cos 2θ3 + 4 sin θ1 sin θ2 sin θ3 = 0 (3.9)

This happens for θ1 + θ2 + θ3 = π/2(mod 2π) or equivalently for b1b2 + b2b3 + b1b3 = 1.

– 7 –



J
H
E
P
0
3
(
2
0
0
9
)
0
0
9

3.3 DBI probe analysis

For the backgrounds introduced in section 2 we will consider D0-brane DBI probes. The

action comprises of a Born-Infeld and a Wess-Zumino term,

S = SBI + SWZ,

S = −T0

∫

dτe−φ
√

−P[G +B]ττ − qT0

∫

C̃(1), (3.10)

where T0 is the tension of the probe. The value of q depends on whether the probe is a

brane (+1) or an anti-brane (−1), and P[G +B] denotes the pull-back of the background

fields to the worldvolume of the D0-brane. C̃(1) refers to the induced D0-charge resulting

from turning on B-fields in the presence of Dp-branes. In what follows we will make use

of static-gauge. Similar analysis for D0-Dp without B-fields may be found in [18], which

we follow.

For the Dp with B-field backgrounds, the BI term takes the form:

Sp
BI = −m

∫

dτAp

√

1 − f(ṙ2 + r2φ̇2), (3.11)

where Ap depends on Dp-brane B-field background we are probing:

A2 = f−1/2h−1/2,

A4 = (h1h2)
−1/2,

A6 = f1/2(h1h2h3)
−1/2. (3.12)

Here m is just the tension of the D0 i.e. T0 = m.

The WZ for p = 2, 4, 6 may be read off from the supergravity solutions introduced

earlier. We then proceed by deriving the canonical momenta pi = ∂L/∂qi and the Hamil-

tonian. The Hamiltonian is a monotonically increasing function of both ṙ, φ̇, so we set

these terms to zero to find the potential. The potential V derived from the Hamiltonian

H = mV then takes the simple form

V ≡ Ap + qC̃(1). (3.13)

We can now proceed case by case. We will be interested in analysing the potentials as

the B-fields vary. In the case of D2 and D4 it is possible to tune B, by completing squares,

such that V is a constant and there is a no force (BPS condition). For D6, this was not

possible but we plotted the potential and noted the minimum.

For D2, the D0-probe sees a potential that gradually flattens as the B-field is increased

until the potential becomes a constant. From

V = f
−1/2
2

(

s2f−1
2 + c2

)1/2
+ qsf−1

2 , (3.14)

we see that only the choice c = 0, q = −1, will make V constant. This agrees with the

earlier κ-symmetry analysis where we noted that in the limit of infinite B-field on the D2,

the D2-charge is dissolved and the probe will only see D0-charge. In this limit there is no

– 8 –
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force. Similar features are seen for the later potentials, so from now on we confine ourselves

to finite B-fields.

For zero B-fields there is no force between D0 and D4. The addition of B-fields makes

the potential attractive unless the B12 = B34. To see this we complete squares so that V

maybe written

V =

(

s21s
2
2f

−2 + c21c
2
2 +

f−1

2

(

(c1s2 + s1c2)
2 + (c1s2 − s1c2)

2
)

)1/2

− qs1s2f
−1. (3.15)

By confining ourselves to the first quadrant i.e. ci > 0, si > 0, we see that imposing

s1/c1 = s2/c2,

B12 = B34, (3.16)

leads to a constant potential V = c2 if q = 1. In orthonormal frame this above self-dual

condition on the B-fields agrees with the earlier κ-symmetry (3.2). For this condition on

the B-fields, the induced D2-charge does not attract the D0-probe and it sees only the

source D4-charge and the induced D0-charge via the B-fields. Neither of these exert any

force on the probe.

For D6, the potential starts off repulsive in the absence of B-fields. As one increases the

B-fields, there are two cases to consider. For q < 0, the potential is repulsive. However for

q > 0, as the B-fields are increased beyond a certain value, the repulsion is overcome and

the potential forms a bound state - figure 1. For the critical B-field value, this bound state

is at infinity, but as the B-fields are increased further, the location of the bound approaches

r = 0. We determined the minimum of the potential as a function of coordinates θ1, θ2 and

θ3 and found that it was located at

r = −cos θ1 cos θ2 cos θ3Q6

cos(θ1 + θ2 + θ3)
, (3.17)

=
Q6

b1b2 + b1b3 + b2b3 − 1
. (3.18)

In moving between the angles of (3.17) and the B-fields of (3.18), we have used B2i 2i−1|∞ =

bi = tan θi. We have a lower bound on the existence of a supersymmetric D0-D6 system in

terms of asymptotic B-fields:

b1b2 + b1b3 + b2b3 ≥ 1. (3.19)

We see here that the B-fields have to be large enough to overcome the repulsion. The

above location of the minimum may seem quite strange until it is repackaged in terms of

orthonormal frame angles αi (2.22), where it becomes (3.4). In other words, the D0 probe

knows about Witten’s supersymmetry conditions. This seems like a surprising result as we

have come upon it in a rather circuitous manner.

The finite separation from the D6 in its supersymmetric configuration is evidence in

higher dimensions that supersymmetric D0-D6 will be multi-centered [8], where when (3.19)

is saturated, one finds a marginal stability wall. This all rings well with the work of Denef

and Moore in four-dimensions.
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Figure 1. Potential V (r) seen by D0 probe in D6 BBB background as the B-fields are increased.

In ascending order one sees: a repulsive potential (b = 0); a flat potential at infinity for the critical

value bcrit; for b > bcrit this bound state moves inwards; eventually in the large B-field limit the

D0 is attracted.

In beautiful work, Denef, Moore and collaborators describe composite BPS bound

states compactified on CY3 from ten to four-dimensions [7, 8]. From [8], the separation

between a composite state of charges Γ1 and Γ2 is given by

r =
〈Γ1,Γ2〉

2

|Z1 + Z2|
Im(Z1Z̄2)

, (3.20)

where 〈Γ,∆〉 is an intersection product on H3(CY3,C).

For this system the holographic central charges are simply:

Z1 = p0τ1τ2τ3, Z2 = −q0, (3.21)

where p0 and q0 are the D6 and D0-charge respectively and bI = Reτ is the Ith B-field

and aI = ImτI is the area of Ith T 2 of T 6. By taking the probe approximation p0 =

Q6c1c2c3 >> q0 (2.17) limit for finite bI , aI , after correctly normalising the asymptotic

behaviour, one finds that the distance between D0 and D6 is (3.18), with the pole being

at the same point of moduli space.

Just one more comment: The above potentials all harbour information about the geom-

etry of the D6, while the string scattering amplitudes are all performed at the worldvolume

of the brane. As a result, the gravity effects of the latter are largely overlooked, and to

compare with the potentials seen by the D0-probes in the presence of Dp-brane, we must

look at the large R limit. We expand the DBI potentials (3.13) in R

V (R) = V0 + V1(B)/R7−p + · · · , (3.22)

where we use V1(B) to remind us that the potential is a function of the B-fields. The force,

−dV/dR, which we may directly compare with the amplitude is then

F = V1(B)/R7−p−1. (3.23)
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So, when V1(B) = 0, we get a no-force condition for the B-fields in terms of θi. Bearing in

mind q = ±1, we summarise the results in the following:

Dp-brane Condition on angles

D2 sin θ1 = −q,
D4 sin θ1 = q sin θ2,

D6 sin θ1 = ± cos(θ2 + qθ3).

(3.24)

As anticipated, we recover the string theory results. The large distance limit reconciles

these two probe approaches.

4 Supersymmetric D0-D6 solution

The supergravity solution for a large class of three-charge supertube, black hole and black

ring solutions in five-dimensions were found several years ago. For a decent review, we

recommend [12]. These all allow uplifts on T 6 to M-theory and preserve at least 1/8 BPS.

From our earlier κ-symmetry analysis in section three, we have seen that the desired D0-D6

solution with B-fields will preserve the same amount of supersymmetry. In this section, we

identify that solution from the larger class. In particular, we identify the correct charges

and investigate the conditions imposed on the solution by demanding it to be free of closed-

timelike-curves (CTCs).

4.1 General solution

For an eleven dimensional metric of the form

ds2 = − (Z1Z2Z3)
−2/3 (dt + k)2 + (Z1Z2Z3)

1/3 (ds2B
)

+
(

Z−2
1 Z2Z3

)1/3 (
dx2

1 + dx2
2

)

+
(

Z1Z
−2
2 Z3

)1/3 (
dx2

3 + dx2
4

)

+
(

Z1Z2Z
−2
3

)1/3 (
dx2

5 + dx2
6

)

, (4.1)

with a one-form

k = µ(dz + ~A · d~x) + ω, (4.2)

and a four-dimensional Gibbons-Hawking base metric ds2B :

ds2B = V −1(dz + p cos θdφ)2 + V (dr2 + r2dΩ2
2),

V = 1 + p/r, (4.3)

the BPS conditions are satisfied if ZI and µ take the following form,

ZI =
1

2
CIJKV

−1KJKK + LI ,

µ =
1

6
CIJK

KIKJKK

V 2
+

1

2V
KILI +M, (4.4)

and ω solves the equation

~∇× ~ω = V ~∇M −M~∇V +
1

2

(

KI ~∇LI − LI
~∇KI

)

. (4.5)
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Here KI , LI ,M and V are all harmonic functions allowing multiple centres and in the case

of T 6, we have CIJK = |ǫIJK |.
The M-theory three-form potential A(3) is given by

A(3) = A1 ∧ dx12 +A2 ∧ dx34 +A3 ∧ dx56, (4.6)

where the one-form potentials AI , may be expressed thus:

AI =
KI

V
(dz + p cos θdφ) + ~βI · d~x− 1

ZI
(dt+ k) , (4.7)

with β denoting the solution to
~∇× ~βI = −~∇KI . (4.8)

Having skimmed over the general form of the solution in M-theory, we now reduce to

IIA so that we can make contact with the earlier single-centred D6 B-field solution. The

ten-dimensional solution is then

ds2 = −f−1/2 (dt+ ω)2 + f1/2V −1Z−1
I

(

dx2
2I−1 + dx2

2

)

+ f1/2
(

dr2 + r2dΩ2
2

)

,

eφ = f3/4V −3/2(Z1Z2Z3)
−1/2,

C(1) = −µV
2

f
(dt + ω) + p cos θdφ,

C(3) =

[

− 1

ZI
(dt+ ω) + βI

]

∧ dx2I−1 ∧ dx2I + p cos θdφ ∧B(2),

B(2) =

[

KI

V
− µ

ZI

]

dx2I−1 ∧ dx2I , (4.9)

with summation over I and

f = Z1Z2Z3V − µ2V 2. (4.10)

To proceed, we need to establish a connection between the coefficients appearing in the

harmonic functions and the asymptotic D6, D4, D2 and D0 charges.

From [12], we see that the eight functions of the general solution V,KI , LI ,M maybe

identified with the eight independent parameters in the 56 of the E7(7) duality group in

four dimensions:

p0 = −V, pI = KI , qI = LI , q0 = −2M. (4.11)

With these identifications, the quartic invariant I4, [20] takes the form

I4 = q0p
1p2p3 − p0q1q2q3 −

(

p0q0 + pIqI
)2

+ 4
∑

I<J

pIqIp
JqJ ,

= −M2V 2 − 1

3
MCIJKK

IKJKK −MVKILI −
1

4
(KILI)

2

+
1

6
V CIJKLILJLK +

1

4
CIJKCIMNLJLKK

MKN . (4.12)

Although the entropy does not depend on the sign of I4, it is important as it separates

BPS black hole solutions (I4 > 0) from non-BPS solutions (I4 < 0). The non-BPS D0-D6

solutions with B-fields were analysed in [21].
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We note that the harmonic functions KI , LI and M correspond to D4, D2 and D0-

charge respectively. These are in addition to the D6 charge. For D6, D6 with B-fields and

D0-D6 with B-fields, neither D2 nor D4 charges appear, so we will henceforth set KI and

LI to be constants

KI = kI
0 , LI = lI0. (4.13)

This choice will be validated later when we calculate the charges.

4.2 Solution constraints

As the metric may be shown to be regular even when V = 0 [12], we only need examine

the presence of CTCs. We primarily concern ourselves with ensuring the metric has the

correct signature asymptotic signature ηµν and with eliminating of Dirac-Misner strings.

The first condition may be imposed by demanding that the inequality

fr2 sin2 θ − ω2
φ > 0, (4.14)

holds everywhere.

For later purposes, in analysing the second constraint from Dirac-Misner strings, we

consider a two-centre solution of finitely separated D0-charge m2 from D6-D4-D2-D0,

KI = kI
0 +

kI
1

r
,

LI = lI0 +
lI1

r
,

M = m0 +
m1

r
+
m2

Σ
, (4.15)

where Σ =
√
r2 +R2 − 2Rr cos θ. This solution corresponds to a solution located on the

z-axis of R
3 at z = 0 and z = R. The azimuthal angle is given by θ.

When solving for ω (4.5), one encounters three kinds of terms on the right hand side

~∇1

r
, ~∇ 1

Σ
,

1

r
~∇ 1

Σ
− 1

Σ
~∇1

r
. (4.16)

These respectively admit the following solutions for ωφ:

cos θ,
r cos θ −R

Σ
,

r −R cos θ

RΣ
, (4.17)

with the general solution being a linear combination of these with the addition of a constant

κ. With the above choice of harmonic functions, ωφ is

ωφ = [m1 −m0p+
1

2
(kI

0 lI1 − lI0k
I
1)] cos θ +m2

(

r cos θ −R

Σ

)

+pm2

(

r −R cos θ

RΣ

)

+ κ, (4.18)

Requiring that Dirac-Misner strings vanish on the z-axis corresponds to demanding ωφ(θ =

0, π) = 0. In terms of the above coefficients, this condition can be met if
[

m1 −m0p+
1

2

(

kI
0lI1 − lI0k

I
1

)

]

= −m2 =
m2p

R
= −κ. (4.19)
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The final expression for ωφ then becomes

ωφ = m2

[

1 − (r +R)

Σ

]

(1 − cos θ). (4.20)

Note here that the vanishing of Dirac-Misner strings imposes the asymptotic flatness con-

dition, ωφ → 0 as r → ∞, for free.

4.3 D6 solutions

The simplest example we consider is single-centred D6. From (4.11), the absence of D0-

charge means that m1 = 0. It also leads to CTCs and Dirac-Misner strings, so it should

be set to zero. For similar reasons m0 = 0. At this point, only

kI
0 = 0, lI0 = 1, (4.21)

will lead to a solution with asymptotic metric ηµν and no B-fields present.

Next we can consider adding B-fields to the D6. Again the absence of CTC requires

m0 = 0. If we define bI to be the asymptotic value of the B-field at infinity from (4.9) and

denote the string coupling constant by gs = eΦ|∞, we have

bI = −
∑

J k
J
0 lJ0 − 2kI

0 lI0

(|ǫIJK |kJ
0 k

K
0 + 2lI0)

(4.22)

g4/3
s =

∑

I 6=J k
I
0lI0k

J
0 lJ0 + 2

3 |ǫIJK |lI0lJ0lK0 −
∑

I

(

kI
0 lI0

)2

∏

I

(

2lI0 + |ǫIJK |kJ
0 k

K
0

)2/3
. (4.23)

These can be used to find kI
0 and lI0 as follows

kI
0 =

(

∑

J 6=I bJ

)(

b2I + g
4/3
s

)

∑

J<K bJbK − g
4/3
s

, lI0 = −
∏

J 6=I

(

b2J + g
4/3
s

)

∑

J<K bJbK − g
4/3
s

(4.24)

For simplicity, we take gs = 1 henceforth. Finally to get the flat metric ηµν asymptot-

ically, we need to rescale coordinates r and t in (4.9) by3

t̃ = f−1/4
∞ t , r̃ = f1/4

∞ r (4.25)

where we have denoted the asymptotic value of f at infinity by f∞ which is given by

f∞ =

∏

I

(

b2I + 1
)2

(
∑

I<J bIbJ − 1
)4 (4.26)

3Since we take gs = 1 we do not need to rescale T 6 coordinates. In general we need to rescale it by

factor g
3/4
s .
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Using these relationships one may then plough ahead and calculate the asymptotic

charges. Taking into account the rescaling one finds,

q0 =
1

κ2

∫

T 6×S2

⋆dC(1) = −4π

κ2
V ol

(

T 6
)

pb1b2b3,

qI =
1

κ2

∫

T 4×S2

⋆
(

dC(3) −H ∧ C(1)
)

=
2π

κ2
V ol

(

T 4
I

)

|ǫIJK |pbJbK ,

pI =
1

κ2

∫

T 2×S2

dC(3) = −4π

κ2
V ol

(

T 2
I

)

pbI ,

p0 =
1

κ2

∫

T 2×S2

dC(1) = −4π

κ2
p. (4.27)

The four-dimensional mass may also be calculated using the rescaled metric

4G4M = p
∏

I

(

1 + b2I
)1/2

. (4.28)

These charges agree with those computable using the earlier metric (2.16) and fluxes (2.17)

corresponding to the 1/2-BPS D6 with B-fields solution.

Before leaving this example, there is one final remark. As ωφ = 0, we only require f > 0

everywhere for this solution to be CTC-free. Expanding f , one sees that it is positive if,

p
∏

I lI0 > 0, or alternatively, if

p

(

1 −
∑

I<J

bIbJ

)

> 0. (4.29)

Now most of the work has been done. We simply have to introduce a D0-charge to the mix.

As seen above, m1 is necessarily zero to avoid CTCs. So the presence of CTCs rules out

the introduction of non-induced D0-charge on top of the D6-brane. In other words, there

is no single-centred supersymmetric D0-D6 solution. The only way to add a D0-charge

then seems to be to turn on m2, which corresponds to the addition of D0-charge at a finite

distance R̃. Here we are using the rescaled metric.

Analysis of the vanishing of Dirac-Misner strings (4.19) in the rescaled metric imposes

the following constraints

m2 = m0p, (4.30)

R̃ = −f1/4
∞ p. (4.31)

The first condition (4.30) here is also required to satisfy (4.14), so it is consistent. The

second sets p < 0, which as mentioned before, causes no problems for regularity.

We now again solve for k0 and l0 in terms of the new asymptotic B-field

bI = −p
(
∑

J k
J
0 lJ0 − 2kI

0 lI0

)

+m2

p
(

|ǫIJK |kJ
0 k

K
0 + 2lI0

) , (4.32)

and find

kI
0 =

(

p
∑

J 6=I bJ

)

(

b2I + 1
)

+ 2m2

p
(
∑

J<K bJbK − 1
) , lI0 = −

p
∏

J 6=I

(

b2J + 1
)

+ 2m2
∑

I 6=J bI

p(
∑

J<K bJbK − 1)
. (4.33)
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Therefore, the distance R̃ is given by

R̃ =

(

p2
∏

I

(

1 + b2I
)

+ 4m2 (m2 + p (
∑

I bI −
∏

I bI))
)1/2

∑

I<J bIbJ − 1
, (4.34)

To compare this with the DBI calculation, we simply take the m2 → 0 limit. In this limit

R̃ =
|p|
∏

I(b
2
I + 1)1/2

∑

I<J bIbJ − 1
,

=
Q6

b1b2 + b2b3 + b1b3 − 1
, (4.35)

where in the last line, we recover the same result as the DBI.

This solution is again CTC-free if p
∏

I lI0 > 0, where lI0 are given above (4.33).

Despite the dependence of the B-field on the additional D0-charge m2, one can re-

calculate the charges. After a little bit of algebra, one finds that the charges with three

independent B-fields are

q0 =
4π

κ2
V ol(T 6)(−pb1b2b3 + 2m2),

qI = |ǫIJK |2π
κ2
V ol(T 4

I )pbJbK ,

pI = −4π

κ2
V ol(T 2

I )pbI ,

p0 = −4π

κ2
p. (4.36)

The ADM mass and angular momentum may be expressed

4G4M =

(

p2
∏

I

(

1 + b2I
)

+ 4m2

(

m2 + p

(

∑

I

bI −
∏

I

bI

)))1/2

, (4.37)

J =
m2|p|
2G4

. (4.38)

4.4 Black hole generalisation

The motivation so far has been to see how D0 interacts with D6 in the presence of B-fields.

We have noted the presence of three regimes dependent on the B-fields. An immediate

generalisation is to consider D6 with extra charges and B-fields and to once again look at

how the forces balance themselves out in a supersymmetric setting. Recall that we expect

the potential seen by D0 to have an attractive contribution from D2 charges, a repulsive

contrbution from D6, with D0 and D4 playing the role of onlookers. In principle, via

scattering and DBI probe calculations, one can get better acquainted with this system by

ignoring various degrees of back-reaction.

With the solution constructed in the previous section, it is an easy task to consider

D0 in the presence of D6-D4-D2-D0 with B-fields system. Refering the reader to (4.15),

we are considering m2 D0-charge at one centre, while turning on kI
1 , lI1 and m1 on the D6.
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The charges for this system take the rather simple form:

q0 =
4π

κ2
V ol

(

T 6
)

(

−pb1b2b3 +
1

2!
|ǫIJK |kI

1bJbK + lI0bI + 2 (m1 +m2)

)

,

qI =
4π

κ2
V ol

(

T 4
I

)

(

1

2!
|ǫIJK |pbJbK − |ǫIJK |kJ

1 bK − lI1

)

,

pI =
4π

κ2
V ol

(

T 2
I

) (

−pbI + kI
1

)

,

p0 = −4π

κ2
p, (4.39)

where we consider sums over contracted indices. One can clearly see how the B-fields

induce lower dimensional Dp-brane charges. But, in general, we don’t expect this more

general two-centred configuration to preserve supersymmetry i.e. we expect to run into

CTCs.

However, we have explicitly checked that for a range of the parameters there exists

a CTC-free supersymmetric solution when only D2-charges are present i.e. kI
1 = m1 = 0.

Here we present the case where all the LI and bI are equal, with any generalisation being

again immediate. The expression for the asymptotic B-fields is then

b = −pk0l0 + 2m2 + 3k0l1
2p(k2

0 + l0)
. (4.40)

We use (4.19) to eliminate m0, which along with the finite separation guarantees there are

no Dirac-Misner strings. The expressions for k0 and l0 in terms of p, l1,m2 and b are

k0 =
2bp(b2 + 1) + 2m2

p(3b2 − 1) − 3l1
, l0 = −(p+ 3l1)(b

2 + 1) + 4bm2

p(3b2 − 1) − 3l1
. (4.41)

The distance between the two centres then becomes

R̃ = −f1/4
∞ p, (4.42)

where

f∞ =
p2
(

1 + b2
)3

+ 4m2

(

m2 + pb
(

3 − b2
))

+
(

9l21 + 6l1p
(

1 − b2
)) (

1 + b2
)

+ 12bl1m2

(3pb2 − p− 3l1)
4 .

(4.43)

The angular momentum of this solution is unchanged from (4.38). This is not surprising

as we haven’t added a D4 magnetic partner for the D2 at the position of the D0-charge

m2. The mass may be expressed as

4G4M = f1/4
∞ (3pb2 − p− 3l1). (4.44)

The solution will be CTC-free again if (4.14) is satisfied everywhere.

Reducing to four-dimensions, there is a horizon at r̃ = 0. The Beckenstein-Hawking

entropy is given by

SBH =
√

l31pG4. (4.45)
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5 Discussion

In this work we investigated the physics of the supersymmetric D0-D6 system. Our study

culminates in writing down explicitly a 1/8 BPS solution. In the process of this work, we

also glance over simpler Dp-brane systems with B-fields. By probing the D6 with B-fields

background with a D0, the result solidifies our understanding of the dependence of the D0-

D6 solution on B-fields. We see that there is a wall of marginal stability and a two-centred

supersymmetric D0-D6 only exists if the asymptotic B-fields are sufficiently large. Once

this value is exceeded, the separation distance decreases with increasing B-field.

In constructing the final solution, we also had to make use of one extra ingredient. From

electromagnetics, we expect a system which carries both electric and magnetic charges to

generate angular momentum, so our final solution necessarily carries angular momentum.

In terms of the existing five-dimensional black hole and black ring literature, we see how

that absence of Dirac-Misner strings and the correct signature of the metric (no CTCs)

dictate the rest of the story: they rule out a single-centred D0-D6 and determine the dis-

tance of separation between the sources as a function of the asymptotic B-fields. Although

this solution is not a black hole, we generalise the solution by adding extra charges to the

D6, so that the D6 develops a horizon.

It would be interesting to consider the D0-dynamics from the perspective of the non-

commutative Yang-Mills theory derived from the D6-branes with nonzero B-fields. Our

gravity contruction implies that the BPS object should carry nonzero R-charge, which is

somewhat different from what see in the field theory.

Another open avenue is to consider generalisations of the above D0-D6 solution to D0-

D6-D4-D2-D0 with supersymmetry. One can ask how the addition of more centres helps

preserve supersymmetry. We can also consider charges at the location of the D0, which

should lead to black ring solutions [14]. Within these generalisations there will be black

objects allowing microstate descriptions.
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A Conventions

A.1 T-duality

The action of T-duality on massless NS-NS sector fields Gmn, Bmn, and the dilaton φ is

well known. In search of consistent conventions, we choose to adopt the conventions of

Hassan [15] wholesale. In the case of the NS fields these are:

G̃zz = 1/Gzz, e2φ̃ = e2φ/Gzz,

G̃µν = Gµν − (GzµGzν −BzµBzν)/Gzz, G̃zµ = −Bzµ/Gzz ,

B̃µν = Bµν − (GzµBzν −BzµGzν)/Gzz, B̃zµ = −Gzµ/Gzz .

(A.1)

Here z denotes the Killing coordinate in which direction we T-dualise, while µ, ν denote

coordinates other than z. The RR fields which are independent of z transform under

T-duality as

C̃(n)
zν2...νn

= a
[

C(n−1)
ν2...νn

− (n− 1)(Gz[ν2
C

(n−1)
zν3...νn])/Gzz

]

,

C̃(n)
ν1ν2...νn

= aC(n+1)
zν1ν2...νn

− nBz[ν1
C̃

(n)
zν2...νn]. (A.2)

Throughout this paper, we will adopt the a = +1 convention.

A.2 D=11,10 Supergravities

We will follow the conventions of [22] in using a (-,+,+,. . . ) space signature with ǫ012...♯ =

+1. The inner product of a q-form with a p-form is

αyβ = (1/q!)αb1 ...bqβb1...bqa1...ap−q , (A.3)

and the Hodge dual of a qform in D dimensions is defined by

⋆ αb1...bq = (1/q!)ǫ
a1...aq

b1 ...bD−q
αa1...aq . (A.4)

In D = 11, imposing supersymmetry requires that the variation of the gravitino ΨM

be zero:

δΨM = ∇Mǫ+
1

12

[

ΓMG(4) − 3G
(4)
M

]

ǫ = 0, (A.5)

where we define the contractions in bold via

A(n) =
1

n!
Ai1...inΓi1...in ,

B(n)
m =

1

(n− 1)!
Bmi2...inΓi2...in . (A.6)

Here

∇M ≡ ∂M +
1

4
ωMABΓAB, (A.7)

where the spin connection ωMAB (in any dimension) is calculable from the vielbein

ωMAB =
1

2
(−cMAB + cABM − cBMA),

c A
MN = 2∂[NE

A
M ]. (A.8)
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D = 11 supergravity metrics are related to IIA metrics in D = 10 via the reduc-

tion ansatz

ds2M = exp(−2φ/3)ds2IIA + exp(4φ/3)
(

dx11 + C(1)
)2
. (A.9)

In performing this reduction, in addition to the D = 10 IIA metric we also introduce a

scalar field φ (dilaton) and a one-form potential C(1). The three-form A(3) and the field

strength G(4) = dA(3) in D = 11 are then decomposed as

A(3) = C(3) +B ∧ dx11,

G(4) = F (4) +H ∧
(

dx11 +C(1)
)

, (A.10)

where

H = dB,

F (4) = dC(3) −H ∧ C(1). (A.11)

Taking into account the warp-factor e−2φ/3 in (A.9), we see that

G(4) = e4φ/3F(4) + eφ/3H(3)Γ11. (A.12)

The warp-factor will also produce extra terms via the spin connection when we take the

above reduction ansatz and place it in (A.5). If we then make the following redefintions:

λ = 3e−φ/6Γ11Ψ11,

ψm = e−φ/6(Ψm +
1

2
ΓmΓ11Ψ11),

ǫ = e−φ/6ẽ, (A.13)

we obtain the Killing spinor equations of IIA

δλ =

[

∂aφΓa − 1

2
H(3)Γ11 −

3

4
eφF(2)Γ11 +

1

4
eφF(4)

]

ǫ̃, (A.14)

δψm =

[

Dm − 1

4
H(2)

m Γ11 −
1

8
eφF(2)ΓmΓ11 +

1

8
eφF(4)Γm

]

ǫ̃. (A.15)

A.3 Equations of Motion for IIA

We begin with the bosonic form of the supergravity analysis from Polchinski [19]. The

action may be written:

SIIA = SNS + SR + SCS ,

=
1

2κ2
10

∫
[

e−2φ

(

R ⋆ 1 + 4dφ ∧ (⋆dφ) − 1

2
H ∧ (⋆H)

)

+
1

2
F (2) ∧ (⋆F (2)) +

1

2
F̃ (4) ∧ (⋆F̃ (4)) +

1

2
B ∧ F (4) ∧ F (4)

]

, (A.16)

where 4

F̃ (4) = F (4) −H ∧C(1). (A.17)

4We have flipped the sign of B in this action so that our definitions of the gauge invariant four-form

F̃ (4) coincide with Polchinski.
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We also note that we have defined the volume form such that

dxa0 ∧ dxa1 ∧ · · · ∧ dxa9 =
√−gǫa0a1...a9dx0 ∧ dx1 ∧ · · · ∧ dx9, (A.18)

and our Hodge-duality conventions are unchanged from before (A.4). Varying this action

with respect to B, C(1) and C(3) respectively we get the following flux equations of motion:

0 = d
(

e−2φ ⋆ H
)

+ d
(

C(1) ∧ ⋆F̃ (4)
)

+
1

2
F (4) ∧ F (4),

0 = d
(

⋆F (2)
)

+H ∧ ⋆F̃ (4),

0 = d
(

⋆F̃ (4)
)

+H ∧ F (4). (A.19)

B D2 B-field Killing spinors

We list the gravitino variations for D2 with B-field (2.1) here. As mentioned in the main

text, the relationship between ǫ and ǫ̃ is given by (2.7).

δψ
(B)
0 =

1

8
f3/4∂rf

−1Γr0ǫ− 1

8
f3/4∂rf

−1Γr12e−αΓ12Γ11ǫ,

= eα/2Γ12Γ11

[

1

8
f3/4∂rf

−1Γr0

]

(1 − Γ012)ǫ̃,

δψ
(B)
1 = e3α/2Γ12Γ11

[

−1

8
f3/4∂rf

−1Γr1

]

(1 − Γ012)ǫ̃,

δψ
(B)
2 = e3α/2Γ12Γ11

[

−1

8
f3/4∂rf

−1Γr2

]

(1 − Γ012)ǫ̃,

δψ(B)
r = f−1/4∂rǫ−

1

2
f−1/4∂rαΓ12Γ11ǫ−

1

8
f3/4∂rf

−1ǫ,

= eα/2Γ12Γ11

[

f−1/4∂r −
1

8
f3/4∂rf

−1

]

ǫ̃. (B.1)

We may also check the variation of the gravitino in one of the external θ directions on the

transverse sphere, getting

eα1/2Γ12Γ11

[

f−1/4

r

(

∂θ −
1

2
Γrθ

)

+
1

8
f3/4∂rf

−1Γrθ(1 − Γ012)

]

ǫ̃. (B.2)

We will ignore the external variations of the gravitino in all subsequent analysis, confident

that these variations are zero. In each case the variations will simply give us information

about ǫ i.e in the case of D2 we get

ǫ = eθ/2Γrθeφ/2Γθφη, (B.3)

where η is a constant spinor satisfying the projector eαΓ12Γ11η = η.
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C Dp-Dp’ bound state with B-field

We consider the interaction between a Dp-brane which are stretched along directions

x0, · · · xp and located at xi = 0, i = p + 1 · · · 9 and a Dp’-brane stretched along directions

x0, · · · xp′ and located at xj = Y j, j = p′ + 1 · · · 9. The open strings which are stretched

between these D-branes are described by following boundary conditions

σ = 0

{

Xµ = 0 µ = p+ 1, .., 9

∂σX
µ = 0 µ = 0, .., p

(C.1)

σ = π

{

Xµ = Y µ µ = p′ + 1, .., 9

∂σX
µ = 0 µ = 0, .., p′

(C.2)

Boundary conditions on world-sheet fermions will be given by supersymmetry transforma-

tion. We find

Xµ = pµτ +
∑

n∈Z
1
nα

µ
ne−inτ cosnσ µ = 0, . . . , p′

=
∑

r∈Z+1/2
1
rα

µ
r e−irτ sin rσ µ = p′ + 1, . . . , p

= Y µ σ
π +

∑

n∈Z
1
nα

µ
ne−inτ sinnσ µ = p+ 1, . . . , 9,

(C.3)

where for the R-sector ψµ
±:











ψµ
+ =

∑

n∈Z d
µ
ne−in(τ+σ) ψµ

− =
∑

n∈Z d
µ
ne−in(τ−σ) µ = 0, . . . , p′

ψµ
+ =

∑

n∈Z d
µ
ne−in(τ+σ) ψµ

− = −
∑

n∈Z d
µ
ne−in(τ−σ) µ = p+ 1, . . . , 9

ψµ
+ =

∑

r∈Z+1/2 d
µ
r e−ir(τ+σ) ψµ

− = −∑r∈Z+1/2 d
µ
r e−ir(τ−σ) µ = p′ + 1, . . . , p











(C.4)

while for the NS-sector










ψµ
+ =

∑

r∈Z+1/2 b
µ
r e−ir(τ+σ) ψµ

− =
∑

r∈Z+1/2 b
µ
ne−ir(τ−σ) µ = 0, . . . , p′

ψµ
+ =

∑

r∈Z+1/2 b
µ
r e−ir(τ+σ) ψµ

− = −∑r∈Z+1/2 b
µ
ne−ir(τ−σ) µ = p+ 1, . . . , 9

ψµ
+ =

∑

n∈Z b
µ
ne−in(τ+σ) ψµ

− = −∑n∈Z b
µ
ne−in(τ−σ) µ = p′ + 1, . . . , p

(C.5)

and the quantization condition in terms of mode expansions are given by

[αµ
r , α

ν
s ] = δr+sδ

µν , (C.6)

{dµ
r , d

ν
s} = δr+sδ

µν , (C.7)

{bµn, bνm} = δn+mδ
µν . (C.8)

Therefore the mass spectrum for NS-sector is given by

α′M2 =
Y 2

4π2α′
+N −

(

1

2
− ∆

8

)

, ∆ = p− p′, (C.9)

N =
∑

n>0

α−n.αn +
∑

r>0

α−r.αr +
∑

r>0

rb−r.br +
∑

n>0

nb−n.bn, (C.10)

and for the R-sector it is given by
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α′M2 =
Y 2

4π2α′
+N, ∆ = p− p′, (C.11)

N =

8−∆
∑

n>0

α−n.αn +

∆
∑

r>0

α−r.αr +

8−∆
∑

n>0

nd−n.dn +

∆
∑

r>0

rd−r.dr. (C.12)

D-branes can interact by exchanging closed strings. This can be expressed in terms of open

string loops. As a result, the amplitude is given by

A =

∫

dt

2t

∑

i,p

e−2πα′t(p2+M2
i ) (C.13)

After a bit algebra this amplitude can be written as5

A = 2Vp′+1

∫

dt

2t

(

8π2α′t
)−(p′+1)/2

e−
Y 2t

2π2α′ (NS − R), (C.14)

where NS and R are given by

NS = 2∆/2−1 q−1+∆
4

(

∏ (1 − q2n)

(1 − q2n−1)

)∆(
∏ (1 + q2n)

(1 + q2n−1)

)∆(
∏ (1 − q2n)

(1 + q2n−1)

)−8

(C.15)

R = 23−∆/2

(

∏ (1 − q2n)

(1 − q2n−1)

)∆(
∏ (1 + q2n−1)

(1 + q2n)

)∆(
∏ (1 − q2n)

(1 + q2n)

)−8

(C.16)

Now if we restrict ourselves to massless closed string exchange (small t limit) we get

A = Vp′+1(4π
2α′)3−

p+p′

2 (2 − ∆/2)πG9−p(Y
2), (C.17)

where G9−p is massless Green function in 9 − p-dimensions. As an example, one may

consider D0-D2 where

A = V
(

4π2α′
)2
πG7

(

Y 2
)

, (C.18)

the positive amplitude implies there is an attractive force between D0 and D2.

Having recapped the procedure, we now shift focus and consider two parallel Dp-branes

and turn on a B-fields on the worldvolume of one of these branes. We start by examining

the case where the B-field has just two non-zero components (Bp−1 p = −Bp p−1 = 2πα′b).

The boundary conditions are given by

σ = 0

{

∂σX
µ = 0 µ = 0, 1, . . . , p

Xµ = 0 µ = p+ 1, . . . , 9.

σ = π



















∂σX
µ = 0 µ = 0, 1, . . . , p− 2

∂σX
p−1 + b∂τX

p = 0

∂σX
p − b∂τX

p−1 = 0

Xµ = Y µ µ = p+ 1, . . . , 9.

(C.19)

5We need to consider appropriate GSO projection.
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After a little algebra, the amplitude may be determined to be

A ∝ VpT
2
p g

2
s

1

sin θ
(1 − cos θ)2G9−p(Y

2) (C.20)

where, B = tan θ.

Some things to note here: if we switch off the B-field θ = 0, A = 0 and there is no

force between the branes. For θ > 0, we get attraction (A > 0). So we see the attracting

influence of the B-fields on what was an initially BPS configuration of parallel branes.
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